1. ВКЛАД КАСПИЙСКОЙ ЭКОЛОГИЧЕСКОЙ ПРОГРАММЫ И ТЕГЕРАНСКОЙ КОНВЕНЦИИ В РАЗВИТИЕ МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ КАСПИЙСКОГО МОРЯ

Проблемы исследования и мониторинга загрязнения Каспийского моря в течение многих лет находятся в центре внимания Каспийской Экологической Программы (КЭП). В рамках своей деятельности КЭП организовала ряд проектов, которые внесли существенный вклад в оценку загрязнения Каспийского моря в период после 1990 г.

1.1 КЭП-2000

ASTP: программа исследования загрязнения

Первые крупномасштабные исследования качества донных отложений в прибрежной зоне Каспийского моря проводились как часть выполняемой под руководством КЭП Программы обучения в море (ASTP) при финансовой поддержке ГЭФ - ПРООН в октябре 2000 - сентябре 2001. В ходе 4-х океанографических рейсов были отобраны 105 образцов донных отложений, из которых большая часть была взята на мелководье и несколько проб – с глубины до 100 м:

- вдоль береговой линии Республики Азербайджан, научно-исследовательское судно (НИС) «Маммед Сулейманов», 15-24 октября 2000 года (19 проб донных отложений);
- вдоль побережья России, НИС «Гидрохимик» и «Исследователь Каспия» Каспийского Научноисследовательского института рыбного хозяйства (КаспНИРХ), октябрь 2000 года (21 проба);
- вдоль береговой линии Исламской Республики Иран (26 проб), а также 2 глубоководные пробы донных отложений вблизи Туркменского побережья и 1 проба вблизи Казахстанского, НИС «Исследователь Каспия»;
- в Северном Каспии у берегов Казахстана, российское НИС «Мидия» (33 пробы).

Пробы донных отложений, отобранные у российского побережья, были проанализированы химической лаборатории Центра химии окружающей среды НПО "Тайфун" (Обнинск, Россия). Остальные пробы были подвергнуты анализу в Лаборатории исследования морской окружающей среды Международного агентства по атомной Монако. В ходе энергии анализа определялся гранулометрический состав донных осадков и концентрация веществ, как металлы. нефтяные таких тяжелые углеводороды, полиароматические углеводороды, пестициды, полихлорбифенилы, суммарный органический углерод, липиды.

Результаты выполнения программы обследования загрязнения Каспийского моря приведены в следующих отчетах:

- International Atomic Energy Agency-Marine Environment Laboratory, *Final Report: Caspian Sea 2000, Phase 1, Contaminant Screening,*
- Scientific Production Association "Typhoon" Institute of Experimental Meteorology - Center for Environmental Chemistry, Determination of Heavy Metals and Organic Pollutants in samples of bottom sediments of Russian Sector of Caspian Sea, Final Report on the Contract RER/98/G32 - Caspian Environment Programme Contract ENVP-PS-110205,
- International Atomic Energy Agency-Marine Environment Laboratory, Final Report: Caspian Sea 2001, Phase 2, Contaminant Screening,
- International Atomic Energy Agency-Marine Environment Laboratory, *Final Report: Caspian Sea 2001, Phase 3, Contaminant Screening.*

1.2 КЭП-2002

ТДА: Трансграничный диагностический анализ Каспийского моря

В Трансграничном диагностическом анализе (ТДА) (2002) были проанализированы имеющиеся данные мониторинга и научных исследований окружающей среды Каспийского моря. На основе этого анализа были выявлены области с наибольшим загрязнением, которые стали объектом дальнейшей деятельности в области мониторинга.

1.3 КЭП-2005

Научно-исследовательский рейс 2005 (SSC-2005)

Научно-исследовательский рейс 2005 (SSC-2005) был проведен летом - осенью 2005 г. в рамках Стратегического плана действий (СПД) КЭП. Маршруты трех экспедиций на научно-исследовательских судах «Гилан», Иран (маршрут 1), «Алиф Хаджиев», Азербайджан (маршрут 2) и «Тантал», Россия (маршрут 3) обеспечили покрытие прибрежной зоны всего Каспия: было отобрано16 проб донных отложений у побережья Азербайджана, 19 — Ирана, 8 — Казахстана, 13 — России, 18 — Туркменистана, всего 74 пробы.

Одной из главных особенностей проекта Программа обучения методике отбора проб донных осадков и консервации дальнейших лабораторных их для Обучение исследований. проводилось представителем Лаборатории исследований морской среды МАГАТЭ (MESL) и включало короткий учебный курс на суше и практические работы на борту судна. Данный курс был нацелен на совершенствование практических навыков мониторинга в прикаспийских странах.

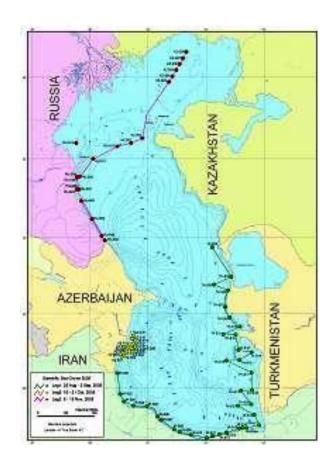


Рис. 1.1 Маршруты плавания *НИС «Гилан»*, Иран (зеленые точки), *НИС «Алиф Гаджиев»*, Азербайджан (желтые точки) и *НИС «Тантал»* (малиновые точки) в ходе научно-исследовательского рейса 2005 г.

Лабораторные исследования собранных проб включали определение более 100 различных загрязнителей и проводились аккредитованными национальными и международными лабораториями:

- Лабораторией исследований морской среды (ЛИМС) МАГАТЭ, Монако (маршрут 1);
- АзЭкоЛаб, Азербайджан (маршрут 2);
- ИО РАН им. П.П. Ширшова в сотрудничестве с НПО «Тайфун», Россия (маршрут 3).

Результаты SSC-2005 были представлены на сессии Руководящего комитета КЭП в декабре 2006 г.

В 2005 г. КЭП, с помощью ЛИМС МАГАТЭ-MESL, организовала межлабораторные сравнительные исследования, чтобы оценить способность региональных лабораторий выполнять анализ донных отложений на должном уровне. Результаты сравнения были обнародованы на Сессии региональной группы 4 в Баку в октябре 2005.

1.4. Волжский Каскад 2005 (Дельта Волги -2005)

В 2005 были выполнены камеральные и полевые исследования по определению главных загрязнителей, выносимых с речными водами из Волжского Каскада. Исследования выполнялись в рамках проекта ПРООН/ГЭФ

«Выполнение положений Конвенции и Плана действий по Защите окружающей среды Каспийского моря — Фаза II" Росгидрометом, Центром международных проектов (СІР) и Институтом водных проблем Российской Академии Наук.

В ходе исследований были проанализированы все данные (в том числе архивные) о концентрации важнейших загрязняющих веществ в воде и донных отложениях в Нижней Волге в пределах 200-километровой зоны от побережья Каспийского моря, полученные на станциях Росгидромета, расположенных в верхней и центральной частях дельты Волги, а также в научных экспедициях; выполнено описание временной динамики пространственного распределения загрязняющих веществ в воде и донных отложениях Нижней Волги, дельты и устьевого взморья; обобщены данные по гидрологическому режиму за 1995-2005 гг. и выполнено гидрологическое районирование дельты и устьевого взморья, для того, чтобы оценить средний годовой вынос загрязняющих веществ из Волги в Каспийское море.

Для проверки результатов оценки загрязнения дельты Волги по историческим данным были проведены полевые исследования в дельте и на взморье Нижней Волги. 37 отобранных проб подвергались лазерной гранулометрии и анализу на содержание суммарного органического углерода, 5 проб - всестороннему химическому анализу на металлы, алифатические и полиароматические углеводороды, хлорированные пестициды и полихлорбифенилы.

В итоге были выявлены пробелы в знаниях о динамике водных потоков и эволюции загрязняющих веществ в дельте Волги и определены задачи для дальнейших исследований.

1.5 Кура-2005 Сток загрязняющих веществ с водами р.Куры

Для оценки вклада р. Куры в загрязнение Каспийского моря КЭП был осуществлен региональный проект "Исследования и изыскания для определения стока важнейших загрязняющих веществ из реки Куры в Каспийское море (от Мингечаурского водохранилища к дельте Куры)". В рамках исследований в определенных точках между Мингечаурским водохранилищем и устьем Куры в экстремальные периоды (половодье и межень) были отобраны пробы воды и донных осадков. Основная цель исследований заключалась в выявлении «горячих точек» старых зон сильного загрязнения пестицидами в бассейне реки Куры.

1.6 Tepek - 2006

Сток загрязняющих веществ из рек Терек, Сулак и Самур

Для оценки потоков загрязняющих веществ с водами рек Терек, Сулак и Самур в 2006 г. был выполнен "Проект камерального исследования для определения потоков важнейших загрязняющих веществ из реки Терек в

Каспийское море". Были проанализированы мониторинга за 2002–2005 гг. (содержание нефтяных углеводородов, тяжелых металлов, фенолов. СПАВ, биогенных веществ и силикатов), а также данные о загрязнении, полученные В нескольких научных экспедициях 2002-2004 гг. в Карагалинской гидросистеме и у гидростанции Аликазган в дельте Терека.

1.7 TACИС-2005. CaspianMAP

Последним ряду проектов В поддержку мониторинговых исследований Каспийского моря стал проект ЕС / ТАСИС "Мониторинг качества вод и План действий для районов Каспийского моря, вызывающих беспокойство в части загрязнения» (CaspianMAP), который был запущен в 2005 и завершен в 2009 г. Главная цель CaspianMAP состояла в том, чтобы достигнуть улучшения качества морской и прибрежной среды Каспийского моря. В связи с этим одной из основных задач проекта был пересмотр существующих программ мониторинга Каспийского моря в прикаспийских государствах учетом актуальных проблем аналитических экологических и наличия возможностей в регионе.

В 2008—2009 гг. национальными организациями прибрежных государств (за исключением Ирана) при поддержке международных экспертов были выполнены четыре судовых обследования уровня загрязнения Каспия с целью:

- оценить возможности прикаспийских стран самостоятельно планировать и выполнять комплексный мониторинг в зонах, подвергающихся воздействию наземных и морских источников загрязнения;
- оценить технические возможности национальных агентств и аналитических лабораторий осуществлять региональные программы мониторинга качества морских вод и определить потребность в их дальнейшей поддержке;
- протестировать оборудование и современные средства мониторинга, в т.ч. оборудование, поставляемое в рамках программы ТАСИС;
- изучить особенности и динамику загрязнения морской среды;
- повысить квалификацию региональных специалистов, разрабатывающих и реализующих программы мониторинга.

Экспедиции с участием экспертов проекта были проведены осенью 2008 - весной 2009 года в прибрежных районах Казахстана, Азербайджана, Туркмении и России. Образцы воды и донных отложений были проанализированы в национальных лабораториях, прошедших специальный конкурсный отбор. Наиболее полный набор требуемых типовых исследований был выполнен "AzEcoLab" (Азербайджан) и НПО "Тайфун" (Российская Федерация).

В рамках дополнительных контрактов каждая прибрежная страна была обеспечена дополнительным оборудованием, предназначенным для пробоотбора и лабораторных химических анализов.

Также в рамках данного проекта были разработаны рекомендации по созданию региональной программы мониторинга качества воды (RWQMP).

Таким образом, под руководством КЭП и ТАСИС, впервые после распада СССР, национальные службы мониторинга совместно выполнили сложные экспедиции, а национальные лаборатории получили современное аналитическое оборудование и средства пробоотбора. Однако приходится отметить, что в силу разных причин (нехватка судов, недостаточное техническое оснащение, отсутствие квалифицированного персонала) не во всех странах экспедиции были выполнены одинаково успешно.

1.8 Проект Первого обзора состояния окружающей среды Каспийского моря

Проект Первого обзора состояния окружающей среды Каспийского (SoE-2010) был вдом подготовлен международной группой экспертов ПО поручению ТК. В обзоре Временного Секретариата рассмотрены различные проблемы окружающей среды Каспийского моря, в том числе:

- изъятие био- и минеральных ресурсов, изменение стока рек, выбросы в атмосферу, отходы (твердые бытовые, радиоактивные, промышленные, сельскохозяйственные);
- качество морской воды, воздуха, почвы, донных осадков, поступающих в море пресных вод и состояние биоразнообразия;
- существующая напряженность в социальноэкономической сфере;
- реакция на эти воздействия, включая управление на региональном и национальном уровнях, политику и законодательство, деятельность по мониторингу и обмену информацией.

Очевидно, что в данном обзоре невозможно было отразить все особенности Каспийской экосистемы и антропогенного воздействия на нее, однако в целом документ рассматривает все крупные проблемы в регионе.

В подразделе 5.1. Состояние качества морских вод и поступающих в море пресных вод отмечены главные источники загрязнения, включая сток рек; кратко описаны все главные речные системы со списком преобладающих загрязнителей; проанализированы главные недостатки в системах мониторинга в разных странах. Значительная часть подраздела посвящена выявлению и описанию долгосрочных тенденций концентрации В главных загрязнителей: нефтяных углеводородов, фенолов, СПАВ, аммония, тяжелых металлов; особенностям кислородных условий в северной и южной частях Каспийского моря.

К сожалению, трудности в получении необходимой информации, возникшие при подготовке отчета, стали причиной некоторых недостатков данного проекта. Так, изза нехватки информации оказалось трудно оценить вклад площадных источников в загрязнение морской среды, промышленных сбросов, источников загрязнения, расположенных выше Астраханской области, объемов поступления загрязняющих веществ с территории Исламской Республики Иран.

Среди других замечаний можно отметить следующие:

- не выдержана методология DPSIR, особенно при оценке воздействий, приводящих к изменениям в морской среде;
- данные по качеству воды не систематизированы;
- данные о экономическом развитии в разных частях Обзора не соответствуют друг другу;
- представленные данные о стоке рек не позволяют определить объем загрязнения, поступающего с речным стоком и, следовательно, оценить влияние стока на качество морской воды;
- описание изменения климата могло быть дополнено данными о трендах;
- было бы желательно завершить каждую главу параграфом с рекомендациями.

Однако, несмотря на отмеченные недостатки, общие заключения Обзора звучат вполне убедительно, а выводы представляются хорошо обоснованными и приемлемыми.

2. КАСПКОМ: ОРГАНИЗАЦИЯ, НАБЛЮДАТЕЛЬНЫЕ СЕТИ, ДАННЫЕ И ПРОДУКЦИЯ

2.1 История, организация и область деятельности

Координационный комитет по гидрометеорологии и мониторингу загрязнения Каспийского моря (КАСПКОМ) был основан Национальными гидрометеорологическими службами Республики Азербайджан, Исламской Республики Иран, Республики Казахстан, Российской Федерации и Туркменистана на встрече в Тегеране в сентябре 1994. Образование КАСПКОМ было вызвано необходимостью усиления координации действий и согласования методов наблюдений обработки данных области И В гидрометеорологии и мониторинга загрязнения Каспийского моря в целях обеспечения безопасности населения и устойчивого экономического развития региона.

КАСПКОМ возглавляется Председателем, который меняется каждые два года на основе ротации. В настоящее время Председателем КАСПКОМ является Александр Васильевич Фролов, Руководитель Росгидромета. Сессии КАСПКОМ проходят ежегодно в одной из прикаспийских стран. Координатором межсессионой деятельности Комитета является Сергей Константинович Монахов, директор ФГБУ «Каспийский морской научно-исследовательский центр» (Росгидромет), г. Астрахань.

Область деятельности КАСПКОМ обязанности национальных гидрометеорологических служб прикаспийских государств (НМГС), несущих ответственность за прогноз погоды, климатических условий и мониторинг состояния моря. Наблюдения за гидрологическим режимом вод суши входит в обязанности НМГС Азербайджана, Казахстана, России и Туркмении; мониторинг загрязнения окружающей среды (воздуха, пресной и морской воды, почвы) включен в мандаты только двух НМГС, а именно Казахстана и Российской Федерации. По этой причине деятельность КАСПКОМ сосредоточена мониторинге и прогнозе гидрометеорологических условий и состояния поверхности моря; особое внимание уделяется технологиям метеорологического обеспечения операций по реагированию на чрезвычайные ситуации, связанные с разливом нефти.

Главные линии сотрудничества между НМГС следующие:

- координация национальных планов по восстановлению и развитию национальных сетей наблюдений, систем сбора и обработки данных, численных методов прогноза;
- обмен в реальном времени данными наблюдений на гидрометеорологических и аэрологических станциях в регионе Каспийского моря в соответствии со схемой обмена данными Всемирной метеорологической организации;
- обмен в реальном времени метеорологической и, частично, океанографической прогностической продукцией (прежде всего прогнозами волнения и предупреждениями о ветровых нагонах и сгонах);
- обмен в задержанном режиме данными метеорологических наблюдений, морских прибрежных гидрологических наблюдений (уровня моря, температуры и солености воды на поверхности моря), и, частично, данными о загрязнении морских вод;
- выполнение совместных или скоординированных судовых обследований в целях изучения гидрологического и гидрохимического состояния и загрязнения моря, а также научно-исследовательских работ как в открытом море, так и в прибрежной зоне;
- подготовка обобщенных справочных материалов / оценок по гидрометеорологии, гидрохимии и загрязнению Каспийского моря в целом;
- совместные действия по обучению персонала НМГС.

К реализации положений Тегеранской Конвенции имеют отношение следующие области деятельности КАСПКОМ:

- прогноз и оповещение об опасных гидрометеорологических явлениях (сильный ветер, волнение, нагоны) ст. 13;
- прогноз морских течений и переноса загрязнения ст. 17:
- мониторинг регионального климата ст. 14, 20;

- мониторинг гидрологического режима моря (в т.ч., уровня моря) и впадающих в него рек ст. 20, 16, 19;
- мониторинг гидрохимического состояния и загрязнения морской среды ст. 19.

2.2 Завершенные и планируемые проекты КАСПКОМ и вклад деятельности Комитета в мониторинг гидрометеорологических условий и загрязнения Каспийского моря

Наблюдения за загрязнением морских акватории Каспийского моря начали проводиться в 60-х годах прошлого столетия, но систематический характер они приобрели только после создания в СССР в 1972 году Общегосударственной службы наблюдения и контроля за загрязненностью объектов природной среды (ОГСНК). Порядок организации И проведения наблюдений определялся государственным стандартом ГОСТ 17.1.3.08-80 «Правила контроля качества морских вод» (введен в действие с 1 января 1983 года).

Преимуществами данной системы мониторинга были:

- использование в качестве базы сложившейся системы гидрометеорологических и океанографических наблюдений, как в прибрежной части, так и в открытом море (система «вековых» разрезов);
- возможность одновременных метеорологических, гидрологических, гидрохимических и гидробиологических наблюдений в определенных пунктах;
- зависимость периодичности наблюдений и в прибрежных районах, и в открытой части моря от уровня антропогенной нагрузки;
- использование данных не только для оценки качества морских вод, но и определения баланса загрязняющих веществ, что входит в оценку состояния морской среды в ее современном понимании.

Основным недостатком был узкий перечень контролируемых загрязняющих веществ и использование в процедуре анализа экстракционно-фотометрических методов, не отличающихся избирательностью. В середине 80-х годов перечень контролируемых веществ был расширен за счет тяжелых металлов и хлорорганических пестицидов. Одновременно в перечень контролируемых компонентов морской среды были включены донные отложения.

Данные о концентрации нефтепродуктов (полученные с помощью инфракрасной спектрометрии), тяжелых металлов (метода атомно-абсорбционной спектроскопии), пестицидов (газожидкостной хроматографии) рассматриваются как надежные, так как они сопоставимы с данными, полученными более современными методами и на других внутренних морях.

Система мониторинга загрязнения морских вод охватывала Каспийское море почти целиком, за исключением акватории, прилегающей к иранскому побережью. Данные наблюдений обобщались в Ежегодниках качества морских вод, которые впоследствии служили основой для подготовки обобщающих обзоров [Мехтиев, Гюль, 2006].

Комплексный характер этих наблюдений позволил в 1998 году провести ретроспективную оценку состояния морской среды с использованием гидрологических и океанографических данных для расчета потоков и балансов загрязняющих веществ [Устьевая область, 1998]. Для отдельных районов моря были рассчитаны нагрузка, потенциал загрязнения и ассимиляционная емкость морских вод в отношении нефтепродуктов [Экологическая оценка, 2005, 2006]. Следует подчеркнуть, что решение такого рода задач практически невозможно, если наблюдения за загрязнением морской среды проводятся отдельно от гидрологических и океанографических наблюдений.

После распада СССР сложившаяся в 1960-1980 годах мониторинга загрязнения Каспийского оказалась в значительной степени подорванной из-за недостатка средств на проведение мониторинга и реформы органов государственного управления в прикаспийских государствах. Так, НМГС Азербайджана и Туркменистана утратили функции проведения мониторинга в результате чего прекратились наблюдения в открытой части моря (в т.ч. В прибрежных районах разрезах). наблюдения продолжились, но уже с меньшей периодичностью, при этом они потеряли комплексный характер из-за сокращения контролируемых показателей, мониторинга свелась сугубо к оценке качества морских вод.

Возможно по этой причине, в рамках первой оценки состояния морской среды (в современном ее понимании), каковой является выполненный на первой фазе КЭП Трансграничный диагностический анализ (ТДА), не удалось в полной мере реализовать экосистемный подход. Элементы экосистемы моря рассматривались в ТДА независимо друг от друга, так же как и различные внешние факторы, влияющие на ее состояние.

Однако в последние годы сложились благоприятные условия для восстановления комплексного мониторинга Каспийского моря и даже расширения его функций, а именно:

- а) создана система производственного экологического мониторинга, выполняемого нефтегазовыми компаниями, в которой применяется экосистемный подход;
- в) разработаны гидродинамические модели Каспийского моря, которые, наряду с ежедневными прогнозами волнения, нагонов и течений, позволяют проводить расчет потоков и баланса загрязняющих веществ;
 - г) расширены возможности спутникового мониторинга;
- д) разработан комплекс индикаторов, используемых для оценки состояния морской среды, включая оценку активности загрязняющих веществ (воздействие которых на биоту больше зависит от активности, чем от концентрации); оценку качества морских вод и донных отложений; оценку биоразнообразия планктонных и донных сообществ, оценку

антропогенной нагрузки на акваторию; оценку влияния погоды и климата на морскую среду и морское хозяйство.

Перечисленные выше разработки можно рассматривать как систему гидрометеорологического обслуживания мониторинга и оценки состояния морской среды, позволяющую получить:

- а) данные судовых, прибрежных, буйковых гидрометеорологических наблюдений, устьевых гидрологических и гидрохимических постов;
- б) рассчитанные по данным гидрометеорологических наблюдений и прогнозов поля течений и уровня моря, а также показатели водообмена на заданных границах;
- в) поля температуры поверхностного слоя воды, ледяного покрова, концентрация хлорофилла и взвеси в воде, участки акватории, покрытые нефтяной пленкой;
- г) индикаторы состояния и загрязнения морской среды, методика расчета которых предусматривает использование гидрометеорологических и океанографических данных.

Остается добавить, что в настоящее время данная система используется для оценки состояния акваторий, на которых расположены нефтяные и газовые комплексы.

Важнейшие **проекты КАСПКОМ**, включая выполненные в сотрудничестве с КЭП и ТАСИС:

- совместное российско-казахстанское судовое обследование загрязнения и гидрохимии Северного Каспия (2002);
- судовое обследование загрязнения Северного Каспия как часть Научно-исследовательского рейса КЭП (2005);
- судовое обследование загрязнения дельты Волги как часть проекта КЭП «Полевое исследование дельты Волги» (2005);
- оценка исторических данных о загрязнении дельты Волги как часть проекта КЭП;
- камеральное исследование дельты Волги (2006);
- гидрометеорологический атлас Каспийского моря (2006);
- обследование загрязнения Северного и Среднего Каспия, а также участков на морской границе дельты Волги как часть проекта ЕС/ТАСИС «Мониторинг качества вод и План действий для районов Каспийского моря, вызывающих беспокойство в части загрязнения» (2009);
- путеводитель по гидрометеорологии Каспийского моря в сети Интернет (2009);
- Генеральный каталог уровня Каспийского моря (2010);
- международная конференция «Изменения климата и водного баланса в регионе Каспийского моря» (Астрахань, 19-20 октября 2010);
- информационный бюллетень КАСПКОМ. Выпуск 1 (2010).

2.3 Наблюдательные сети, методы наблюдения и их влияние на качество данных

2.3.1 Гидрометеорологические сети

Прикаспийские НМГС эксплуатируют метеорологические, аэрологические и гидрологические наблюдательные сети.

Количество береговых гидрометеорологических станций и постов (осуществляющих наблюдения за стандартными метеопараметрами, а также температурой воды, уровнем и волнением моря) составляет 13 в Азербайджане, 4 в Иране, 11 в Казахстане, 8 в Российской Федерации и Туркменистане. Сток пресных вод в море от больших рек измеряется на 15 гидрологических постах в Российской Федерации и на 3 в Казахстане. Большинство береговых станций оснащено автоматическими метеорологическими подробная комплексами. Более информация гидрометеорологической сети содержится КАСПКОМ http://caspcom.com/hydromap/index.html.

В прибрежной зоне Казахстана, Туркменистана и России планируется установка морских автономных гидрометеорологических станций (2 метеобуя у Иранского побережья уже находятся в эксплуатации). У прикаспийских НМГС также есть опыт постановки дрейфующих буев (дрифтеров).

20 января 2011 г. на геостационарную орбиту был успешно запущен ИСЗ "Elektro L" (GOMS 2) с зоной обслуживания, включающей Каспийское море. предназначен для многоканальной съемки в видимом и инфракрасном диапазонах с разрешением 1 и 4 км соответственно, а также для оценки состояния морских и океанских акваторий (ветровое волнение, температура поверхности, сгонно-нагонные явления в прибрежной зоне). Еще одним предназначением ИСЗ "Elektro L" является получение И ретрансляция данных от автономных метеорологических наблюдательных платформ.

2.3.2 Сети мониторинга гидрохимического состояния и загрязнения

Морская сеть станций мониторинга гидрохимического состояния и загрязнения Каспийского моря Росгидромета и Казгидромета представлена на рисунке 2.1.

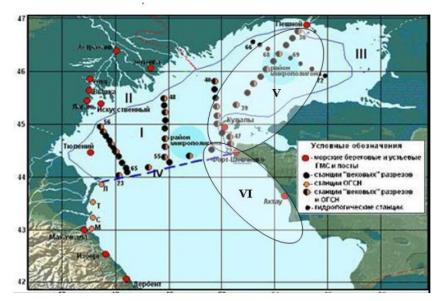


Рис. 2.1 Сеть мониторинга гидрохимического состояния и загрязнения в Северном Каспии (станций ОГСН, см. легенду). Районы I-II and III-VI обслуживаются Росгидрометом и Казгидрометом соответственно.

Восточнее меридиана российско-казахстанской границы отбор проб регулярно производится в 6 пунктах наблюдений, включая р. Урал и отдельные протоки дельты р. Волги на казахстанской территории, а также на 12 станциях в северо-восточной части Каспийского моря, в т.ч., на 2 станциях вдоль канала Урал-Каспийское море. В этих районах отбор проб воды осуществляется Атырауским Центром по гидрометеорологии в период апрель-ноябрь (безледный период).

Мангистауский региональный гидрометеорологический центр отвечает за ежеквартальный отбор проб воды на 3 станциях (Форт-Шевченко, Фетисово, Каламкас), а также на станциях вдоль трех поперечных разрезов в открытом море: Мангышлак-Чечень, Кендерли-Дивичи, Песчаный-Дербент. Пробы воды регулярно отбираются также в районах потенциального воздействия двух районов нефтеразведки – Каражанбас и Арман.

Для отбора проб используется научноисследовательское судно «Тагибат», принадлежащее Центру мониторинга в г. Атырау. Пробы донных отложений в открытом море отбираются 1-2 раза в год.

Рис. 2.2 Научно-исследовательское судно «Тагибат» и часть его бортового оборудования

Мониторинг загрязнения Каспия в пределах российского побережья (рис. 2.3) проводится Дагестанским гидрометеорологическим центром Росгидромета (ДЦГМС), г. Махачкала.

Рис. 2.3 Важнейшие районы мониторинга загрязнения вдоль российского побережья Каспийского моря: 1. Трансграничный район на российско-казахстанской границе, 2. Дельта р. Волга, область основного влияния, 3. Взморье р. Терек, 4. Район влияния города и порта Махачкала, 5. Район влияния г. Дербент, р. Самур и мониторинг трансграничного переноса вод на границе между Россией и Азербайджаном, 6. Станция фоновых наблюдений.

ДЦГМС располагает двумя НИС (рис. 2.4), оснащенными необходимым оборудованием для отбора проб и помещениями для их первичной обработки и хранения. К сожалению, на этих судах отсутствуют современное океанографическое оборудование и приборы, а также батометры для множественного отбора проб.

НИС "Нептун" выполняет работы преимущественно в прибрежной зоне и имеет ограниченную мореходность. "Тантал" располагает стационарным оборудованием и электронными лебедками, с помощью которых можно брать пробы воды и отложений с глубины до 1000 м. Океанографическое оборудование на борту судна состоит из пробоотборника типа Rotan для измерения температуры и солености на глубине до 100 м и глубоководных 10- и 51-литровых батометров с тефлоновым покрытием.

Рис. 2.4 НИС "Тантал" (вверху) и НИС "Нептун" (внизу)

Относительно регулярно контролируются только характеристики гидрохимического режима вод (включая биогенные элементы), а также концентрация нефтяных углеводородов, фенолов и некоторых других компонентов. Сложные анализы стойких органических загрязнителей в воде и донных отложениях в настоящее время не выполняются. Данные о их содержании получены в ходе международных экспедиций.

Центр химии окружающей среды НПО «Тайфун» (Обнинск, Российская федерация) является базовой аналитической лабораторией российской гидрометеорологической службы, которая может выполнять все виды химического анализа. В настоящее время НПО «Тайфун»

ведущей организаций Росгидромета, является осуществляющей химико-аналитическую поддержку программ мониторинга опасных веществ. Высококвалифицированные специалисты Центра могут проводить обучение персонала лабораторий прикаспийских государств. Качество химического анализа подтверждается участием в программах интеркалибрации (программы межлабораторной проверки на международном и национальном уровнях), которые проводятся совместно с лабораториями США, Канады и Западной Европы. Таким «Тайфун» может образом, НΠО выступать главной региональной лабораторией, осуществляющей связи другими квалифицированными лабораториями В Каспийском регионе (например, АзЭкоЛаб В Азербайджане) и возглавить осуществление региональной программы обеспечения и контроля качества химического необходимым будет анализа, что при реализации программы мониторинга Каспийского моря.

системе Казгидромета аналитические работы выполняются тремя основными лабораториями, расположенными Алма-Ате. Атырау. в Актау лаборатории региональных центров в Аналитические Мангистау Актау) Атырау рассматриваются $(\Gamma.$ И казахстанскими государственными органами в качестве партнеров в будущей региональной программе мониторинга Каспия.

2.3.3 Вероятное влияние методики наблюдения и анализа проб на качество данных

Метеорологические, аэрологические и гидрологические наблюдения выполняются в соответствии со стандартами, установленными и контролируемыми Всемирной метеорологической организацией. Стандарты наблюдения включают периодическую калибровку приборов, а также требования к их установке и обслуживанию.

Поэтому данные государственного мониторинга загрязнения морской воды, полученные в региональных лабораториях, в целом расцениваются как надежные, что подтверждается их сопоставимостью с данными, полученными более современными методами и на других внутренних морях и по прежнему являются незаменимой информацией для оценки долгосрочных тенденций уровня загрязнения.

Однако более точная информация намного загрязнении воды и донных отложений Каспийского моря была получена в ходе нескольких проектов КЭП и ТАСИС. Проекты, выполненные в 2000, 2005 и 2009 гг., позволили получить данные о содержании нефтяных углеводородов, полиароматических углеводородов, пестицидов, полихлорбифенилов и др. Вследствие высокой стоимости и сложности подобного анализа, его не всегда возможно выполнить в региональных лабораториях, поэтому вклад международных проектов в данном случае является весьма ценным.

Третий важный знаний условиях источник Каспийского моря – целевые экологические исследования (производственный экологический мониторинг), осуществляемый научно-исследовательскими институтами по поручению нефтяных и газовых компаний. Информация, полученная в ходе производственного экологического мониторинга, впоследствии используется для оценки состояния морской экосистемы.

Таким образом, комбинация разных подходов и источников информации, дополняющих друг друга, представляется лучшим решением проблемы оценки текущего состояния и динамики морской среды.

2.4 Потенциал и ресурсы КАСПКОМ для сбора и анализа данных

В Росгидромете хранятся данные о гидрохимическом режиме и загрязнении Каспийского моря, полученные в результате систематических наблюдений и морских экспедиций с начала 1970-х гг. по настоящее время. Сейчас проводится работа по оцифровке исторических данных и составлении единой базы данных для последующей интеграции в Единую государственную систему информации по обстановке в Мировом океане (ЕСИМО).

В рамках КАСПКОМ был создан Генеральный каталог уровня Каспийского моря, содержаний данные наблюдений за колебаниями уровня за последние 100 лет.

С конца 1960-х гг. Росгидромет публикует Ежегодник качества морских вод по гидрохимическим показателям, в котором обобщаются данные по загрязнению всех 10 морей, омывающих Российское побережье (включая Каспийское море).

Опыт анализа данных Росгидромет получил в результате участия в разработке проекта *Состояние окружающей среды Черного моря* (2008) при финансовой поддержке Черноморской Комиссии, а также проведенной ранее периодической оценке среды Балтийского моря.

НМГС используют в своей деятельности результаты расчетов по гидродинамическим моделям. Модели волнения используются в Азергидромете и ИРИМО, модели сгоннонагонных явлений и морских течений применяются в Росгидромете и Казгидромете (рис. 2.5-2.7). Последние модели играют основную роль в операциях по ликвидации нефтяных разливов в режиме реального времени, а также в ежемесячной и ежегодной оценке трансграничных потоков загрязняющих веществ.

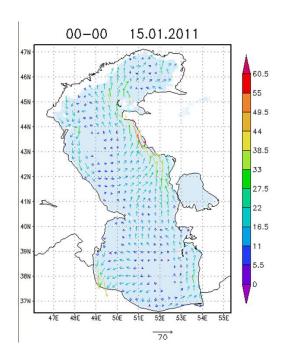


Рис. 2.5. Прогноз морских течений на 48 часов, представленный Росгидрометом в 00 часов по Гринвичу 15 января 2011 года (http://hmc.hydromet.ru/sea/casp/surge/CaspSurge.php)

В Росгидромете разработана модель прогноза эволюции нефтяных разливов (Рис. 2.7.) в результате физических и химических процессов (распространение, испарение, эмульгирование, коагуляция и т.д.) по мере их переноса ветром и морскими течениями с учетом физических и химических свойств нефти (плотность, соотношение легких и тяжелых фракций, и т.д.), а также параметров окружающей среды (температура, волнение).

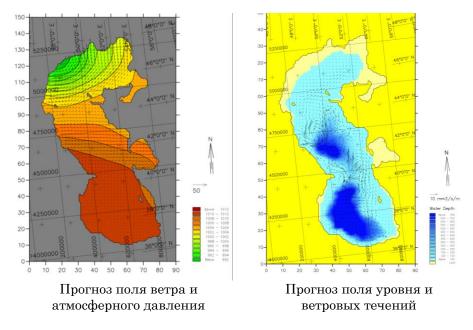


Рис. 2.6 Штормовая модель Каспийского моря для расчета уровенной поверхности, включая сгонно-нагонные явления) и ветровых течений (РГП «Казгидромет»).

Рис. 2.7 Модель эволюции нефтяного разлива на месторождении им. Филановского в северной части Каспийского моря на 28 часов (вверху) и 85 часов (внизу).

По решению КАСПКОМ 19-20 октября 2010 в г. проведена международная научная была конференция "Изменения климата и водного баланса в Каспийском регионе" с участием представителей НМГС прикаспийских государств. Резолюция, принятая конференции, гласит, что экосистема Каспийского региона в настоящее время особенно уязвима из-за изменений климата и водного баланса. Экологические и социальноэкономические последствия изменений неоднозначны и при отсутствии превентивной адаптации ущерб может принять катастрофические масштабы. В связи с этим, принимая во внимание сильную зависимость экосистем Каспийского моря изменений климата И водного баланса, усовершенствовать рекомендовано климатическое обеспечение для защиты окружающей среды Каспийского моря.

2.5 Недостатки существующей системы мониторинга и потенциал ее развития в Каспийском регионе

В прикаспийские обладают целом, государства достаточным потенциалом для проведения гидрометеорологического мониторинга и создания общей картины гидрометеорологических условий Каспийского моря. Главный недостаток системы гидрометеорологического мониторинга - отсутствие автоматизированных станций, способных передавать сведения о метеорологических и гидрологических условиях в отдаленные пункты.

Более серьезные проблемы существуют в системе мониторинга гидрохимических параметров и загрязнения, основными из которых являются старые научно-исследовательские суда, недостаток лабораторного оборудования и отсутствие квалифицированного персонала.

В соответствии с заключением проекта ТАСИС, основной данных проблем причиной является неэффективное управления, а именно - отсутствие стратегии и долгосрочных программ мониторинга качества морской воды. Выполнение рекомендаций по улучшению потенциала аналитических измерений невозможно при отсутствии детального плана и графика работ, утвержденного на государственном уровне, и развития центров методической поддержки и исследовательских программ. Немаловажную роль играет также отсутствие координации действий между прикаспийскими странами. Эффективная реализация программы возможна лишь при условии согласования рабочих планов и обмена данными между региональными партнерами. Протокол о мониторинге в рамках Тегеранской конвенции позволил бы обеспечить достоверность эффективное использование данных мониторинга при решении экологических проблем Каспийского региона.

В целях повышения качества аналитической работы региональных лабораторий, эксперты проекта ТАСИС Caspian MAP дали следующие рекомендации:

- 1. организовать обучение сотрудников лабораторий процедурам проведения анализа проб воды и донных отложений на содержание металлов методами атомной абсорбции на базе одной из ведущих лабораторий Каспийского региона, например, в НПО «Тайфун» (Российская Федерация) или АзЭколаб (Азербайджан);
- 2. создать как минимум одну образцовую аналитическую лабораторию в каждой из прикаспийских стран, задачей которой стало бы методическое обеспечение остальных национальных лабораторий, а также контроль качества измерений в соответствии с едиными стандартами и критериями;
- 3. обеспечить все лаборатории, участвующие в программах мониторинга Каспийского моря стандартами для калибровки и сертифицированными эталонными материалами (в том числе эталонными растворами морской воды, донных отложений др.);

4. наладить процесс подготовки и повышения квалификации персонала лабораторий.

3. ПОТЕНЦИАЛЬНЫЙ ВКЛАД КАСПКОМ В МОНИТОРИНГ ОКРУЖАЮЩЕЙ СРЕДЫ КАСПИЙСКОГО МОРЯ

3.1 Положения Тегеранской конвенции, для осуществления которых необходима гидрометеорологическая и океанографическая информация, как юридическая основа сотрудничества между Тегеранской конвенцией и КАСПКОМ

Юридической основой для сотрудничества между Тегеранской конвенцией и КАСПКОМ являются положения конвенции, для реализации которых необходима гидрометеорологическая и океанографическая информация. Исходя из анализа текста конвенции, к таковым следует отнести положения, сформулированные в ст. 13, п.1; ст. 14, п.1; ст. 16, ст. 19, п.1 и 3; ст. 20.

Полная формулировка перечисленных положений, а также описание форм и способов использования гидрометеорологической и океанографической информации для их осуществления приведены в табл. 3.1. В целом следует отметить, что информация об окружающей среде необходима для обеспечения следующих направлений деятельности по реализации Тегеранской конвенции:

- защита морской среды от природных катастроф и аварий, возникающих в результате антропогенной деятельности (ст. 13);
- защита, сохранение, восстановление, а также рациональное использование биологических ресурсов Каспийского моря (ст. 14);
- мониторинг и оценка состояния морской среды Каспийского моря (ст. 19);
- совершенствование знаний о гидрологическом режиме и динамике экосистемы Каспийского моря, включая проведение исследований колебаний уровня моря с целью смягчения их последствий (ст. 16 и 20).

Положения Тегеранской конвенции, для реализации которых необходима гидрометеорологическая и океанографическая информация

NN III	Положение (статья, пункт) Рамочной конвенции о защите морской среды Каспийского моря	Формы и способы использования гидрометеорологической и океанографической информации
1	2 Ст. 13, п. 1. Договаривающиеся Стороны принимают все необходимые меры и сотрудничают в целях защиты людей и морской среды от последствий природных катастроф или аварий, возникающих в результате антропогенной деятельности. Для этого принимаются меры по предотвращению, обеспечению готовности и реагированию, включая меры по восстановлению	В число природных катастроф входят опасные гидрометеорологические явления (шторма, ураганы, нагоны, обледенение и т.п.), заблаговременное предупрепреждение о которых (прогноз) входит в состав мер по обеспечению готовности. Морские гидрометеорологические прогнозы используются при организации и проведении аварийно-спасательных работ на морских акваториях и, следовательно, входят в состав мер по обеспечению реагирования
2	Ст. 14, п.1 Договаривающиеся Стороны уделяют особое внимание защите, сохранению, восстановлению, а также рациональному использованию биологических ресурсов Каспийского моря, и принимают на основе наилучших имеющихся научных данных все необходимые меры для: (а) развития и повышения потенциала биологических ресурсов с целью сохранения и восстановления экологического равновесия при удовлетворении потребности людей в питании и достижении социальных и экономических целей;	Гидрометеорологические и океанографические данные относятся к наилучшим имеющимся научным данным, необходимым для защиты, сохранения, восстановления и рационального использования биологических ресурсов Каспийского моря в силу того, что гидрометеорологические и океанографические условия относятся к числу основных экологических факторов, определяющих потенциал биологических ресурсов и устойчивый объем их добычи

1	2	3
	(b) поддержания или восстановления популяций морских видов на уровнях, позволяющих обеспечить максимально устойчивый объем их добычи, определяемый соответствующими экологическими и экономическими факторами, и принимая во внимание соотношение между видами	
3	Ст. 16 Доваривающиеся Стороны сотрудничают в разработке протоколов к настоящей Конвенции, предписывающих проведение необходимых научных исследований и, насколько это возможно, принятие согласованных мер и процедур по смягчению последствий колебаний уровня Каспийского моря	Данные гидрометеорологических наблюдений на Каспийском море и в его бассейне являются материалом для проведения научных исследований колебаний уровня моря, включающих разработку долгосрочного прогноза, входящего в состав мер и процедур по смягчению их последствий
4	Ст. 19, п 1. Договаривающиеся Стороны прилагают усилия для создания и осуществления соответствующих самостоятельных и/или совместных программ мониторинга состояния морской среды Каспийского моря	Гидрометеорологические и океанографические наблюдения (как контактные, так и дистанционные) входят в состав программ мониторинга состояния морской среды и используются для интерпретации данных о загрязнении морской среды
5	Ст. 19, п 3. Договаривающиеся Стороны регулярно самостоятельно и/или совместно проводят оценку состояния морской среды Каспийского моря и эффективности мер, принимаемых для предотвращения, снижения и контроля загрязнения морской среды Каспийского моря	В число показателей оценки состояния морской среды входят показатели (например, баланс загрязняющих веществ), для расчета которых используются гидрометеорологические и океанографические данные

6 Ст. 20 Договаривающиеся Стороны осуществляют гидрометеорологических и океанографических проведения научных исследований и разработки Данные гидрометеорологических и океанографических наблюдений на Каспийског море являются составной	1	2	3
		Ст. 20 Договаривающиеся Стороны осуществляют сотрудничество в области проведения научных исследований и разработки эффективных методов предотвращения, снижения и контроля загрязнения морской среды Каспийского моря, для чего Договаривающиеся Стороны принимают усилия по разработке или интенсификации, по мере необходимости, специальных научных программ, направленных в частности на: (g) совершенствование знаний о гидрологическом режиме и динамике экосистемы Каспийского моря, включая колебания уровня моря и влияние таких колебаний на морскую и	Данные гидрометеорологических и океанографических наблюдений на Каспийском море являются составной частью и исходным материалом для совершенствования знаний о гидрологическом режиме и динамике экосистемы

Таким образом, для выполнения положений Тегеранской конвенции необходим комплексный мониторинг, охватывающий следующие компоненты:

- опасные природные явления (в целях предотвращения природных катастроф) ст.13;
- популяции морских видов (в т.ч., эндемичных, редких и находящихся под угрозой вымирания), параметры биоразнообразия и динамика экосистем ст. 14 и 20;
- уровень моря ст. 16;
- параметры переноса водных и воздушных масс (в целях оценки возможности трансграничного воздействия) ст. 17;
- загрязнение и радиоактивность морской среды ст. 19, 20;
- гидрологический режим ст. 20.

3.2 Возможное использование данных КАСПКОМ в процессе реализации Тегеранской конвенции

Возможности использования данных и результатов, полученных Каспийскими НМГС - членами КАСПКОМ, в процессе реализации Тегеранской конвенции:

1. НМГС России и Казахстана (Казгидромет и Росгидромет) на государственном уровне несут ответственность за мониторинг загрязнения морских

акваторий, прилегающих к побережьям Казахстана и России (примерно 40% от площади Каспийского моря). Поэтому данные агентства официально уполномочены правительствами обеих стран обязательства выполнять национальные реализации Тегеранской конвенции. В собственности Poc-Казгидромета находятся ланные гидрохимическим параметрам загрязнению Каспийского моря за несколько десятков лет (с середины 1970-х гг.).

- 2. Определенные результаты работы НМГС (например, данные о стоке воды в устьях рек и моделирование морских течений) могут использоваться непосредственно при оценке притока загрязняющих веществ со стоком рек и их последующего переноса или перераспределения в морской среде. При этом можно использовать численные модели переноса загрязняющих веществ, разработанные на основе ланных преобладающих полях течений. o вертикальной и горизонтальной турбулентности, концентрации взвешенных частиц и абсорбционных свойствах дна. Информация по преобладающим полям течений необходима для любых оценок окружающую среду (ОВОС) воздействия на трансграничном аспекте. Экстренные действия по ликвидации нефтяных разливов будут эффективными в том случае, если они полностью учитывают прогнозы ветра и морских течений. Таким образом, реализация как минимум двух протоколов Тегеранской конвенции зависит от результатов работы НМГС.
- 3. НМГС являются первичным источником данных об изменениях климата, играющих первостепенную роль в функционировании как наземных, так и морских экосистем.

При осуществлении мониторинга загрязнения Каспийского моря Казгидромет и Росгидромет:

- используют 3 научно-экспедиционных судна;
- располагают 5 гидрохимическими лабораториями;
- регулярно оценивают качество воды в прибрежных районах Каспийского моря;
- восстанавливают наблюдения за химическим составом вод на многолетних (вековых) разрезах в открытом море;
- сотрудничают с крупными нефтяными компаниями и другими водопользователями в области организации, проведения и анализа данных производственного экологического мониторинга;
- совершенствуют методики определения химических веществ в морской среде с учетом современного оборудования и расходных материалов;
- осуществляют мониторинг химического состава и загрязнения вод в низовьях рек Волга, Терек, Сулак;

- разрабатывают базы данных химического состава вод и донных отложений;
- готовят государственные доклады о состоянии окружающей среды на национальных территориях.

По мнению экспертов КАСПКОМ, перечень химических параметров, принципиально необходимых для оценки общего состояния Каспийского моря в рамках Тегеранской конвенции, следующий:

Вода

- Фоновые параметры: температура, соленость, взвешенные вещества, прозрачность по диску Секи
- Биогенные вещества: фосфор (общий фосфор, фосфаты), азот (общий азот, нитриты, нитраты, аммоний), силикаты
- Тяжелые металлы: Fe,Cr,Cu,Pb,Zn,Cd, Hg,Ni, Mo,Mn
- Органические загрязняющие вещества: нефтяные углеводороды, фенолы, синтетические поверхностно-активные вещества (СПАВ)
- Органические параметры: биохимическое потребление кислорода (БПК₅), хлорофилл

Донные отложения

- Гранулометрический состав донных отложений, содержание Al (индикатор глинистой доли мелкодисперсной фракции), суммарное содержание органических веществ. Любой из этих показателей является оценкой доли самых мелких частиц, на которых в основном адсорбируются загрязняющие вещества.
- Тяжелые металлы: Fe,Cr,Cu,Pb,Zn,Cd, Hg,Ni, Mo,Mn
- Нестойкие органические загрязняющие вещества: нефтяные углеводороды, фенолы
- Стойкие органические загрязняющие вещества: пестициды групп ДДТ и ГХЦГ, полихлорбифенилы и полиароматические углеводороды (ПАУ).

При анализе проб следует учитывать местонахождение станции взятия пробы. Так, например, в дельте Волги и Северном Каспии фенолы имеют преимущественно естественное происхождение, полихлорбифенилы типичны только ДЛЯ акваторий, находящихся под непосредственным влиянием промышленных зон или крупных портов. Стандартная частота оценки качества полагается 4 раза в год (в различные сезоны) для воды и один раз в 1-2 года для донных отложений. Приведенные параметры в целом совпадают с предложенными ранее экспертами проекта Caspian MAP.

4. ПОТЕНЦИАЛЬНЫЕ ОБЛАСТИ СОТРУДНИЧЕСТВА МЕЖДУ КАСПКОМ И ТЕГЕРАНСКОЙ

КОНВЕНЦИЕЙ В СФЕРЕ МОНИТОРИНГА, СБОРА И АНАЛИЗА ДАННЫХ

На основании приведенного выше анализа предлагаются следующие потенциальные области сотрудничества между КАСПКОМ и Тегеранской конвенцией в сфере мониторинга, сбора и анализа данных:

- (а) непосредственное участие двух НМГС (Казгидромета и Росгидромета) в программе мониторинга Тегеранской конвенции в качестве национальных уполномоченных агентств;
- (b) разработка и ведение совместных исторических баз данных по следующим параметрам:
 - концентрация загрязняющих веществ (ЗВ) в воде и донных отложениях Каспийского моря, полученная в результате мониторинга и научных экспедиций с момента начала наблюдений до настоящего времени;
 - расчетные потоки основных ЗВ в Каспийское море по наблюдениям за речным стоком и химическим составом вод;
 - средний уровень Каспийского моря вдоль всего побережья;
- (c) проведение периодических (каждые 2-3 года) совместных (или скоординированных) экспедиций с целью оценки качества донных отложений в соответствии с согласованной программой;
- (d) разработка общей позиции по процедурам ОВОС в трансграничном аспекте, связанном с оценкой переноса ЗВ морскими и воздушными течениями;
- (e) оценка региональных изменений климата, их реальное и возможное воздействие на экологически значимые параметры гидрологического режима моря (температура, соленость, уровень моря, вертикальный обмен, морские течения и т.д.);
- (f) совместная разработка моделей и методик прогнозирования эволюции нефтяных разливов в открытом море;
- (g) разработка общей позиции по содержанию разделов будущих оценок состояния окружающей среды Каспийского моря в части изменений климата и гидрометеорологических условий.

Непосредственные функции КАСПКОМ в процессе реализации Тегеранской конвенции должны быть согласованы между региональными организациями. Однако существующий потенциал КАСПКОМ позволяет ему стать незаменимым партнером по следующим аспектам оценки среды Каспийского моря:

- a) климат в регионе Каспийского моря и его изменения;
- b) гидрологический режим моря и динамика основных гидрологических параметров (прежде

- всего биологически значимых температуры, солености, насыщения кислородом и т.д.);
- с) речной сток в Каспий и его многолетние тенденции.

Кроме вышеперечисленного, НМГС - члены КАСПКОМ также будут важными партнерами Тегеранской конвенции при реализации протоколов по ликвидации разливов нефти и OBOC.